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Introduction 
•  Tokamak energy confinement is thought to 

be strongly controlled by plasma transport 
in the edge region just inside the last 
closed magnetic flux surface 
–   A first principles understanding of this 

transport requires coupling between 
experiment and theory 

•  BOUT++ is capable of nonlinear fluid 
boundary turbulence analysis in a general 
geometry 
– Experimentally measured C-Mod profiles have 

been used as input for BOUT++ simulations 



The Alcator C-Mod Tokamak 
•  Alcator C-Mod is a 

compact, high-field 
tokamak 
–  R = 0.66 m, a = 0.22 m 
–  B < 8.1 T 
–  ne < 1 x 1021 m-3 

–  Ip < 2 MA 
•  Active Research 

–  Heating and Current Drive 
–  Plasma Transport  
–  Edge and Divertor Physics 

•  Several confinement 
regimes are investigated 
on C-mod 
–  H-mode 
–  I-mode  
–  L-mode  
–  Linear Ohmic  



  
•  L-mode confinement is not likely to lead to a viable fusion reactor 
•  H-mode confinement is satisfactory for an economic fusion reactor  
•  Edge Localized Modes (ELMs) or other mild edge modes (Quasi-

Coherent or Weakly Coherent Modes) reduce impurity 
accumulation and allow steady state H mode operation 

•  I mode is presently under investigation at C-Mod and elsewhere 
An ELM in MAST 

•  C-Mod’s enhanced Dα (EDA) H-mode is relatively 
quiescent with good energy confinement and 
reduced impurity confinement 

–  Pedestal regulated by a continuous quasi-coherent 
mode (QCM) oscillation between 50 - 200 kHz   

Edge Transport Strongly Influences Energy Confinement 

PCI measured density 
fluctuations in various 
confinement regimes 

* M. Greenwald, et. al, 
Fusion Sc. and Tech., 
51, 266, (2007) 

QC	
  



Field-aligned coordinates 

€ 

x =ψ −ψ0,
y = θ,

z = ζ − ν ψ,θ( )dθ
θ 0

θ
∫

where ν is the local 
safety factor given by: 

€ 

ν ψ,θ( )=
B⋅ ∇ζ
B⋅ ∇θ

ζ 

θ 

z 

ψ

Magnetic geometry in BOUT++ Edge Plasmas 

• Magnetic field topology changes from closed to open 
field lines across the separatrix 

• In this talk, the edge refers to 0.95 < ψ	
  < 1.05 (~1 cm 
region in C-Mod) 



 Lundquist Number (S) is a 
dimensionless ratio of the 
resistive diffusion time to the 
Alfvén time 
–  S ~107 in C-Mod EDA pedestal 

Separatrix 

Open field lines 

Zero Current 
beyond Separatrix 

Pedestal 

C-Mod Equilibrium EDA H-Mode Parameters       
used as BOUT++ Input (1110201023.00900) 

η
µ ARvS 0=



The Nonlinear System of Equations for Simulating    
Non-Ideal MHD Peeling-Ballooning Modes 

ü Using hyper-resistivity ηΗ	



SH = µ0R3vA/ηH	
  =	
  S/αH 
 

ü After gyroviscous 
cancellation, the 
diamagnetic drift modifies 
the vorticity and additional 
nonlinear terms 
ü Using force balance and 
assuming no net rotation,  

Er0 = (1/NiZie)∇┴Pi0 

ü Using resistive MHD 
term, resistivity can be 
renormalized as 
Lundquist Number 

S = µ0RvA/η 

Non-ideal physics 
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Non-Ideal Physics were Methodically Included in 
Simulations after Initial Ideal Simulations 

ü Using hyper-resistivity ηΗ	



SH = µ0R3vA/ηH	
  =	
  S/αH 
 

ü After gyroviscous 
cancellation, the 
diamagnetic drift modifies 
the vorticity and additional 
nonlinear terms 
ü Using force balance and 
assuming no net rotation,  

Er0 = (1/NiZie)∇┴Pi0 

ü Using resistive MHD 
term, resistivity can be 
renormalized as 
Lundquist Number 

S = µ0RvA/η 

Non-ideal physics 
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•  BOUT++ calculations show that C-Mod is ideal MHD 
stable for typical EDA H-Modes (1110201023) 

•  However, such modes become linearly unstable when the 
Pedestal Resistivity is included (S < 109)  

BOUT++ Calculations Show C-Mod EDA                
H-Modes Resistively Unstable 

Linearly 
Unstable 

Stable 

!p ~ C exp !t( ), t!"

! = lim
t!"

d
dt
ln !p( )( )

Growth Rate Determination: 

The simulated structure 
of C-Mod’s n = 15 

resistive ballooning 
mode 

Z [m] 

R [m] 



BOUT++ Computed Growth Rates are Consistent  
with Resistive-Ballooning Mode Theory   

Inertial Effects 
Dominate 

3
1

ηγ ∝

Consistent with resistive 
ballooning mode theory 

*B.A. Carreras, et. al., Phys. 
Fluids 30, 1388, (1987) 

Fit	
  gives	
  
exponent	
  as	
  

0.35	
  



BOUT++ has computed the Linear Mode 
Spectrum  for C-Mod’s EDA H-Mode 

Diamagnetic and nonlinear 
effects must be included for 
comparison with PCI and 
other fluctuation diagnostics  



3
2
n∝γ

Inertial Effects 
Dominate 

Consistent with resistive 
ballooning mode theory 

*B.A. Carreras, et. al., Phys. 
Fluids 30, 1388, (1987) 

Fit	
  gives	
  
exponent	
  as	
  

0.73	
  

BOUT++ Linear Mode Spectrum Consistent with 
Resistive-Ballooning Mode Theory 



Diamagnetic Effects and an Equilibrium Radial Electric 
Field were Added into the Model 

ü Using hyper-resistivity ηΗ	



SH = µ0R3vA/ηH	
  =	
  S/αH 
 

ü After gyroviscous 
cancellation, the 
diamagnetic drift modifies 
the vorticity and additional 
nonlinear terms 
ü Using force balance and 
assuming no net rotation,  

Er0 = (1/NiZie)∇┴Pi0 

ü Using resistive MHD 
term, resistivity can be 
renormalized as 
Lundquist Number 

S = µ0RvA/η 

Non-ideal physics 
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BOUT++ calculations show that Diamagnetic 
Effects Damp Higher Mode Numbers 



R	
  [m]	
  

Z	
  [m]	
  
B	
  

The BOUT++ Computed Mode is Found to 
Propagate in the Electron Diamagnetic Direction 
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  [m]	
  

Z	
  [m]	
  
B	
  

The BOUT++ Computed Mode is Found to 
Propagate in the Electron Diamagnetic Direction 

Electron	
  
Diamagne;c	
  
Direc;on	
  

•  Propagation direction agrees 
with experiment!!! 
–  Experimental determination 

from Correlation between 
scanning Langmuir probes 

•  Must run nonlinear 
simulations to reach 
saturation and steady-state 
turbulence 
–  Frequency, intensity, and 

localization of mode can then 
compared to measurements 

•  PCI, Reflectometry, ECE, etc. 
–  Can the QC Mode be excited 

and controlled by an external 
antenna? 



Preliminary Nonlinear Simulations have begun – Mode 
Saturation and Turbulent Steady-State have been Observed 

Ini;al	
  
Transients	
  

Linear	
  
Phase	
  

Nonlinear	
  Phase	
  –	
  
Satura;on	
  and	
  
Turbulent	
  Steady	
  

State	
  

τA	
  ~	
  10-­‐8	
  s	
  



Conclusions and Future Work 
•  BOUT++ results agree with theory and show that 

C-Mod’s EDA H-mode is resistively unstable    
•  Turbulent steady-state during nonlinear 

simulations has been achieved 
•  Incorporating flow into nonlinear BOUT++ 

simulations will allow for comparison with 
fluctuation diagnostics 
– The physical origins and effects of the EDA QC Mode 

and the I-mode Weakly Coherent Mode will be 
investigated 

– This effort will further the understanding of edge 
turbulence and its influence on tokamak energy 
confinement  


